
PrairieLearn Okta Integration

Senior Design May 2024 - 33

Mitch Hudson
Tyler Weberski
Chris Costa

Andrew Winters
Carter Murawski
Matt Graham



Table of Contents

Table of Contents 2
Introduction 3
GitHub Repository and Installation 3

docker-compose-production.yml 3
Code Changes 4

Dependencies 4
package.json 5
yarn.lock 5

OIDC Authentication Flow 6
server.js 7
authLoginOid.js 8
authCallbackOid.ts 9

OIDC Login Button 9
CSS Changes 10
HTML Changes 11

Enabling OIDC in PrairieLearn 12
authLogin.html.ts 13
authLogin.ts 14
institution.ts 14
20231114133024_oid_providers__add.sql 15

Configuration 16
OIDC Server Configuration 16
User Info Configuration 17
Login Link Configuration 17
Logo Configuration 17

2



Introduction

This document outlines the steps taken to allow Okta SSO sign-ins for PrairieLearn.
This works via a generic OpenID Connect (OIDC) authentication system that is set up
for Okta by default. The system can be configured to allow any OIDC / OAuth2
authentication method. These configurations will be outlined in more detail in the
Configuration section.

GitHub Repository and Installation

All of the code changes are kept in the GitHub repo. To use the code, you can follow the
instructions on PrairieLearn’s readthedocs page for installing natively and running with
local code. In production, we had to frankenstein our docker compose file using the
instructions found here and here. In the end, our docker-compose-production.yml file
looked like normal with an added volume for the PrairieLearn codebase going to
/PrairieLearn instead of the config file. This caused some compilation issues, so we also
had to follow the instructions here to compile the codebase locally before it would run.
Finally, we followed the instructions here to get the autograders to work.

NOTE: docker-compose-production.yml already has the autograder jobs environment
set up, you just need to make the folder it links to and ensure it runs in the right user.

docker-compose-production.yml

version: '3.8'

services:

pl:

restart: always

image: prairielearn/prairielearn:latest

ports:

- 3000:3000

volumes:

- postgres:/var/postgres

- /var/run/docker.sock:/var/run/docker.sock

- ${HOME}/pl_ag_jobs:/jobs

- /home/pl/PL/PrairieLearn:/PrairieLearn

3

https://github.com/myriath/PrairieLearn/
https://prairielearn.readthedocs.io/en/latest/installingLocal/
https://prairielearn.readthedocs.io/en/latest/running-in-production/docker-compose/
https://prairielearn.readthedocs.io/en/latest/installingNative/
https://prairielearn.readthedocs.io/en/latest/installing/#support-for-external-graders-and-workspaces


container_name: pl

environment:

- HOST_JOBS_DIR=${HOME}/pl_ag_jobs

- NODE_ENV=production

volumes:

postgres:

Code Changes

There are several key changes made to allow this authentication method to work.
Mainly, we needed to add a new dependency for OIDC, update the login page to have
buttons for OIDC logins, add OIDC as a trusted login method, and write code for
handling the OIDC authentication flow. Finally, we added configuration variables so the
authentication can be configured like any other authentication method, and added a
migration to the SQL database to add OIDC as a login provider.

Dependencies

package.json changes

4



package.json
The file apps/prairielearn/package.json needs to be updated to include
passport-openidconnect, with at least version 0.1.1. Passport is the library used by
PrairieLearn to handle authentication, and it has a sub-library module for specifically
OIDC.

yarn.lock changes

yarn.lock
Yarn.lock is a file that contains compilation and dependency information for yarn. All we
added here was passport-openidconnect and oauth. The first section adds
passport-openidconnect to the dependencies and the other part adds the definition for
where the packages are found, as well as adds a new version to oauth.

5



OIDC Authentication Flow

The OIDC authentication flow is handled through the use of Passport OpenID Connect.
To set this up we tell passport to use a new strategy from passport-openidconnect in
apps/prairielearn/src/server.js. Then, two files are added to hold the code for the
endpoints needed by OIDC: apps/prairielearn/src/pages/authLoginOid/authLoginOid.js
and apps/prairielearn/src/pages/authCallbackOid/authCallbackOid.ts.

6



server.js changes
server.js
This file has two changes. First, we add the endpoints defined by authLoginOid.js and
authCallbackOid.ts after checking that OIDC is enabled in the config. Second, in the
stack of async () calls, we insert one that tells Passport to use a strategy defined by
passport-openidconnect and the configuration variables defined in Configuration. This
strategy is then labeled as “oidconnect” for later use.

7



authLoginOid.js changes

authLoginOid.js
This file is used to define the endpoint using Passport. To do this, we use the NodeJS
Express router made by PrairieLearn to add an endpoint. The endpoint is handled with
a function that first checks if OIDC is enabled in the config, then uses passport to
authenticate with the oidconnect strategy defined earlier, giving it failure and success
redirects.

8



authCallbackOid.ts
This Typescript file handles the
callback from the OIDC server,
and logs the user into the user
database. To do this, an
authenticate function is created
that uses Passport to continue the
authentication flow, and either
return a fail state or the user that
logged in. This function is called
in the router function, and the
user is parsed for its
authentication parameters, which
are then loaded into the
database.

9



OIDC Login Button

The login button is configured using the configuration JSON file, and is handled in
apps/prairielearn/src/pages/authLogin/authLogin.html.ts. The file is edited to show the
button in the login page through HTML, CSS, and Typescript.

Adding CSS for the login button

CSS Changes
There is a large section of CSS code for the login page at the beginning of the file, and
here we add some CSS that reads from the configuration JSON to get all of the color
data.

10



Adding HTML for the login button

HTML Changes
After the CSS changes, there is a section of functions that return the HTML for each of
the login buttons. Here, we insert a function of our own that is modeled after the
Shibboleth login button, with minor changes for the configuration variables.

11



Enabling OIDC in PrairieLearn

PrairieLearn has several parts to the authentication system. Specifically, PrairieLearn
uses a database to store active and supported authentication providers. To get
PrairieLearn to recognize OIDC as a login method, we need to update the database and
code that checks the database. To do this, we edit the
apps/prairielearn/src/pages/authLogin/authLogin.html.ts file again, as well as
apps/prairielearn/src/ee/lib/institution.ts,
apps/prairielearn/src/pages/authLogin/authLogin.ts, and add a migration for the
database at apps/prairielearn/src/migrations/20231114133024_oid_providers__add.sql.

12



authLogin.html.ts changes

authLogin.html.ts
There are several places in this file where support for authentication methods are
checked and used, and we need to update all of them to include our OIDC login
method. These are fairly simple, since all login methods follow the same patterns.

13



authLogin.ts changes

authLogin.ts
Here we need to add the case for the OIDC login, and set the url to the /pl/oidlogin
endpoint. This is what allows the OIDC login button to redirect to the login endpoint and
start the OIDC authentication flow.

institution.ts changes

institution.ts
This is also a simple change that updates the getSupportedAuthenticationProviders
function to check the OIDC config variable and properly report its status.

14



Adding the SQL migration

20231114133024_oid_providers__add.sql
The final change made is adding an SQL migration that inserts OIDC as an
authentication provider, as well as adding OIDC as an institution authentication provider.
PrairieLearn’s migration naming convention takes the current date in decreasing order
of importance (yyyyMMddhhmmss) as the identifier, and adds a name with the function
at the end.

The authn_providers table is simply the id and name of the provider, in this case 6 is the
last id (might change in the future) and the name is OID. The
institution_authn_providers table links authentication providers to various institutions. In
this case the id (6) is a new entry, the institution_id (1) points to the default institution,
and the authn_provider_id (6) points to our newly created provider.

15



Configuration

To make the authentication system flexible, we added several configuration variables
that set rules for the authentication. These options are set up in
apps/prairielearn/src/lib/config.ts and link to variables that are set by the user in the
config.json file passed into the PrairieLearn docker container. Here, there are several
categories of variables used by the system. First, there are variables used to configure
the OIDC server and enable the login method. Second, there is a set of variables that
define the keys that the system looks for in the data returned by the OIDC server.
Finally, there are variables that control the look of the login button.

OIDC Server Configuration

Variable Description

hasOid Boolean that controls whether or not to use OIDC as a login
method. Should be true

oidIssuer URL to the OIDC server. For Okta dev servers, it takes the form of
“https://<devid>.okta.com/oauth2/default”

oidAuthUrl URL to the OIDC authentication endpoint. This URL is used to start
the authorization flow. For Okta dev servers, it takes the form of
“https://<devid>.okta.com/oauth2/default/v1/authorize”

oidTokenUrl URL to the OIDC token endpoint. This URL is used to serve JWTs
to the user after authentication. For Okta dev servers, it takes the
form of “https://<devid>.okta.com/oauth2/default/v1/token”

oidUserInfoUrl URL to the OIDC user info endpoint. This URL returns the user
information PrairieLearn needs to keep track of users. For Okta dev
servers, it takes the form of
“https://<devid>.okta.com/oauth2/default/v1/userinfo”.

oidClientId Client ID for server authentication. This links the PrairieLearn server
to the correct OIDC group. Takes the form of a Base64 encoded
string.

oidClientSecret Client secret for server authentication. This authenticates the
PrairieLearn server with the OIDC server. Takes the form of a
Base64 encoded string.

oidRedirectUrl URL used by the OIDC server to redirect traffic back to the
PrairieLearn server after authentication. Takes the form of
“https://<domain>/pl/oidcallback”.

16



User Info Configuration

Variable Description

oidUidKey Key pointing to the UID of the logged in user in the JSON object
returned by the user info endpoint. Default is “username” for Okta.

oidNameKey Key pointing to the name of the logged in user in the JSON object
returned by the user info endpoint. Default is “displayName” for
Okta.

oidUinKey Key pointing to the UIN of the logged in user in the JSON object
returned by the user info endpoint. Default is “id” for Okta.

Login Link Configuration

Variable Description

oidLinkText Text shown in the login button for OIDC. Default “Sign in with Okta”.

oidLinkLogo Path to the SVG logo displayed alongside the login button. Default is
“/images/okta_logo.svg”

oidLinkColors JSON object containing the various coloration rules for the login link.
There are four sub-objects for this config: normal, hover, active, and
focus. Normal, hover, and active all have three attributes:
background, border, and text. Focus only has one attribute: shadow.
Normal is used by default for the link, hover is used when the cursor
is above the link, and active is used when the link is clicked. Focus
is what shows the shadow when the link is in focus. The values for
background, border, text, and shadow are just CSS color strings.
Any CSS can be used here.

Logo Configuration
The logo used alongside the login link is stored in apps/prairielearn/public/images/ and
should be an SVG type image. The default Okta logo is stored as okta_logo.svg.

17



config.ts changes

18


